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Abstract: A procedure for the synthesis of (S)-ethyl 2-ethoxy-4-succinate 2 in 95% e.e. using a
lipase from Candida rugosa was developed. The enzymatic reaction was highly selective for the
secondary ester group and provided the desired (S)-monoacid in 40% yield. The unchanged (R)-
diester was readily racemized and recycled.

In connection with a project devoted to the development of an efficient synthesis of chiral pyrrolidines, a rela-
tively facile and inexpensive access to suitable chiral precursors was expected to be provided by the enzymaticl-3
resolution of the racemic diester 14.
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The enantioselectivity of the enzymatic hydrolysis of 2-substituted succinic acid diester substrates was
reported to be strongly dependant on the nature of the substituent and the ester groupl. In a preliminary
screening of various commercial esterolytic enzymes for the enantioselective hydrolysis of rac-1, two enzymes
were found to exhibit reasonable enantioselectivity and almost exclusive positional selectivity for the secondary
ester: Lipase OF from Candida rugosa (formerly C. cylindracea)’ cleaved predominantly the (S)-diester to form
the acid 2 (68% e.e.; Table, entry 1) whereas a-chymotrypsin (a-CT) operated with opposite selectivity and
provided the (S)-diester 1. As the former lipase showed much higher activity and also tolerated higher substrate
concentrations than o-CT (cf. ref. 6), it was selected for further optimization.

Enantioselectivity was improved upon dissolving the substrate in a water-immiscible cosolvent. With respect
to both enantioselectivity and reaction rate, the most suitable solvent was clearly cyclohexane? (entry 2). At tech-
nically more favoured substrate concentrations (~10%), a significant deterioration in the enantioselectivity was
noticed (entry 3). A concentration of ~5% was then chosen as an acceptable upper limit (entry 4). Employing
LiSCNB8 rather than NaCl as buffer electrolyte enhanced the reaction rate only by a factor of 1.5. As is often ob-
served, lowering the reaction temperature had a beneficial influence on the selectivity of the enzyme (entry 5) but
was limited by the freezing point of the system (<3 °C). Intriguingly, both reaction rate and enantioselectivity de-
creased on raising the pH from 6.5 to 8.5. Similarly, the enzyme concentration played an important role and
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could not be taken lower than 1% w/w with respect to 1. Presumably as the amount of enzyme is reduced (to-
gether with a concomittant extension of the reaction time), the process becomes increasingly thermodynamically
controlled. In preparative experiments using 1-2% enzyme at temperatures of 3-5 °C and a conversion degree of
~40%, acid 2 was secured in 94-96% e.e. and 37-40% yield (entry 6). This enantiomeric excess was suffi-
ciently high to be further enriched to 99.5% e.e. at a later stage of the subsequent reaction sequence. Since the
undesired (R)-diester 1 could be easily racemized and recycled into the initial preparation of (rac)-14, the overall
efficiency of the enzymatic step could be significantly improved.

Table: Hydrolysis of 1 with Lipase OF: optimization of reaction parametersa,

entry diester 1 ratio of pH ratio of temp. | conv. 2
overall conc. % (w/v) | c-hexane/buffer 1/ enzyme T (%) % ee
1 0.4 0 7.0 20 20 50 68
2 0.4 0.12 7.0 20 20 50 90
3 7.4 1.0 7.0 20 20 45 77
4 4.8 1.0 7.0 20 20 45 86
5 4.8 1.0 7.0 20 1 45 90
6 4.8 1.0 6.5 100 3-4 40 94

a: reaction procedure according to ref. 9, except that 0.1 N NaOH was used in exp. 1 and 2.
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